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Precise atom manipulation through deep
reinforcement learning

I-Ju Chen 1 , Markus Aapro1, Abraham Kipnis 1, Alexander Ilin2,
Peter Liljeroth 1 & Adam S. Foster 1,3

Atomic-scale manipulation in scanning tunneling microscopy has enabled the
creationof quantumstates ofmatter basedon artificial structures and extreme
miniaturization of computational circuitry based on individual atoms. The
ability to autonomously arrange atomic structures with precision will enable
the scaling up of nanoscale fabrication and expand the range of artificial
structures hosting exotic quantum states. However, the a priori unknown
manipulationparameters, the possibility of spontaneous tip apex changes, and
the difficulty of modeling tip-atom interactions make it challenging to select
manipulation parameters that can achieve atomic precision throughout
extended operations. Here we use deep reinforcement learning (DRL) to
control the real-world atom manipulation process. Several state-of-the-art
reinforcement learning (RL) techniques are used jointly to boost data effi-
ciency. The DRL agent learns to manipulate Ag adatoms on Ag(111) surfaces
with optimal precision and is integrated with path planning algorithms to
complete an autonomous atomic assembly system. The results demonstrate
that state-of-the-art DRL can offer effective solutions to real-world challenges
in nanofabrication and powerful approaches to increasingly complex scientific
experiments at the atomic scale.

Since its first demonstration in the 1990s1, atom manipulation using a
scanning tunneling microscope (STM) is the only experimental tech-
nique capableof realizing atomically precise structures for research on
exotic quantum states in artificial lattices and atomic-scale miniatur-
ization of computational devices. Artificial structures on metal sur-
faces allow tuning electronic and spin interactions to fabricate
designer quantum states ofmatter2–8. Recently, atommanipulation has
been extended to platforms including superconductors9,10, 2D
materials11–13, semiconductors14,15, and topological insulators16 to create
topological and many-body effects not found in naturally occurring
materials. In addition, atommanipulation is used to build and operate
computational devices scaled to the limit of individual atoms, includ-
ing quantum and classical logic gates17–20, memory21,22, and Boltzmann
machines23.

Arranging adatoms with atomic precision requires tuning tip-
adatom interactions to overcome energetic barriers for vertical or

lateral adsorbate motion. These interactions are carefully controlled
via the tip position, bias, and tunneling conductance set in the
manipulation process24–26. These values are not known a priori and
must be established separately for each new adatom/surface and tip
apex combination. When the manipulation parameters are not chosen
correctly, the adatommovement may not be precisely controlled, the
tip can crash unexpectedly into the substrate, and neighboring ada-
toms can be rearranged unintentionally. In addition, fixed manipula-
tion parameters may become inefficient following spontaneous tip
apex structure changes. In such events, human experts generally need
to search for a new set ofmanipulation parameters and/or reshape the
tip apex.

In recent years, DRL has emerged as a paradigmatic method for
solving nonlinear stochastic control problems. In DRL, as opposed to
standard RL, a decision-making agent based on deep neural networks
learns through trial and error to accomplish a task in dynamic
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environments27. Besides achieving super-human performances in
games28,29 and simulated environments30–32, state-of-the-art DRL algo-
rithms’ improved data efficiency and stability also opens up possibi-
lities for real-world adoptions in automation33–36. In scanning probe
microscopy, machine learning approaches have been integrated to
address a wide variety of issues37,38 andDRLwith discrete action spaces
has been adopted to automate tip preparation39 and vertical manip-
ulation of molecules40.

In this work, we show that a state-of-the-art DRL algorithm com-
bined with replay memory techniques can efficiently learn to manip-
ulate atomswith atomic precision. TheDRL agent, trained only on real-
world atommanipulation data, can place atomswith optimal precision
over 100 episodes after ~2000 training episodes. Additionally, the
agent is more robust against tip apex changes than a baseline algo-
rithm with fixed manipulation parameters. When combined with a
path-planning algorithm, the trained DRL agent forms a fully autono-
mous atomic assembly algorithmwhich we use to construct a 42 atom
artificial lattice with atomic precision. We expect our method to be
applicable to surface/adsorbate combinations where stable manip-
ulation parameters are not yet known.

Results and discussion
DRL implementation
We first formulate the atom manipulation control problem as a RL
problem to solve itwithDRLmethods (Fig. 1a). RL problemsare usually
formalized as Markov decision processes where a decision-making
agent interacts sequentially with its environment and is given goal-
defining rewards. The Markov decision processes can be broken into
episodes, with each episode starting from an initial state s0 and ter-

minatingwhen the agent accomplishes the goal orwhen themaximum
episode length is reached. Here the goal of theDRL agent is tomove an
adatom to a target position as precisely and efficiently as possible. In
eachepisode, a new randomtarget position0.288 (one lattice constant
a) – 2.000nmaway from the starting adatomposition is given, and the
agent can perform up to N manipulations to accomplish the task.
Here the episode length is set to an intermediate valueN = 5 that allows
the agent to attempt different ways to accomplish the goal without it
being stuck in overly challenging episodes. The state st at eachdiscrete
time step t contains the relevant information of the environment. Here
st is a four-dimensional vector consisting of the XY-coordinates of the
target position xtarget and the current adatom position xadatom
extracted from STM images (Fig. 1(c)). Based on st, the agent selects an
action at ~π(st) with its current policy π. Here at is a six-dimensional
vector comprised of the bias V = 5–15mV (predefined range), tip-
substrate tunneling conductanceG= 3–6μA/V, and theXY-coordinates
of the start xtip,start and end positions xtip,end of the tip during the
manipulation. Upon executing the action in the STM, a method com-
bining a convolutional neural networkand an empirical formula is used
to classify whether the adatom has likely moved from the tunneling
current measured during manipulation (see Methods section). If the
method determines the adatom has likely moved, a scan is taken to
update the adatom position to form the new state st+1. Otherwise, the
scan is often skipped to save time and the state is considered
unchanged st+1 = st. The agent then receives a reward rt(st, at, st+1). The
reward signal defines the goal of the DRL problem. It is arguably
the most important design factor, as the agent’s objective is to max-
imize its total expected future rewards. The experience at each t is

Fig. 1 | Atom manipulation with a DRL agent. a The DRL agent learns to manip-
ulate atoms precisely and efficiently through interacting with the STM environ-
ment. At each t, an action command at ~π(st) is sampled from the DRL agent’s
current policy π based on the current state st. The policy π is modeled as a multi-
variate Gaussian distribution with mean and covariance given by the policy neural
network. The actionat includes the conductanceG, biasV, and the two-dimensional
tip position at the start (end) of the manipulation xtip,start (xtip,end), which are used
to move the STM tip to try to move the adatom to the target position. b The atom

manipulation goal is to bring the adatom as close to the target position as possible.
For Ag on Ag(111) surfaces, the fcc (face-centered cubic) and hcp (hexagonal close-
packed) hollow sites are themost energetically favorable adsorption sites46,47. From
the geometryof the adsorption sites, the error ε is limited to ranges from0nmto affiffi

3
p

depending on the target position. Therefore, the episode is considered successful
and terminates if the ε is lower than affiffi

3
p . c STM image of an Ag adatom on Ag

substrate. Bias voltage 1 V, current setpoint 500pA.
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stored in the replaymemory buffer as a tuple (st, at, rt, st+1) andused for
training the DRL algorithm.

In this study, we use a widely adopted approach for assembling
atom arrangements - lateral manipulation of adatoms on (111) metal
surfaces. A silver-coated PtIr-tip is used to manipulate Ag adatoms on
an Ag(111) surface at ~5 K temperature. The adatoms are deposited on
the surface by crashing the tip into the substrate in a controlled
manner (seeMethods section). To assess the versatility of ourmethod,
theDRLagent is also successfully trained tomanipulateCoadatomson
a Ag(111) surface (see Methods section).

Due to difficulties in resolving the lattice of the close-packed
metal (111) surface in STM topographs41, target positions are sampled
from a uniform distribution regardless of the underlying Ag(111) lattice
orientation. As a result, the optimal atommanipulation error ε, defined
as the distance between the adatom and the target positions
ε≔∥xadatom − xtarget∥, is limited from0 nm to affiffi

3
p = 0.166 nm, as shown

in Fig. 1b and Methods, where a = 0.288 nm is the lattice constant on
the Ag(111) surface. Therefore, in the DRLproblem, themanipulation is
considered successful and the episode terminates if ε is smaller than
affiffi
3

p . The reward is defined as

rtðst ,st + 1Þ=
�ðεt + 1 � εtÞ

a
+

�1 if εt + 1 ≥
affiffi
3

p

1 if εt + 1<
affiffi
3

p

(
, ð1Þ

where the agent receives a reward +1 for a successfulmanipulation and
−1 otherwise, and a potential-based reward shaping term42�ðεt + 1�εt Þ

a that
increases reward signals and guides the training process without
misleading the agent into learning sub-optimal policies.

Here, we implement the soft actor-critic (SAC) algorithm43, a
model-free and off-policyRL algorithm for continuous state and action
spaces. The algorithmaims tomaximize the expected reward aswell as
the entropy of the policy. The state-action value function Q (modeled
with the critic network) is augmentedwith an entropy term. Therefore,

the policy π (also referred to as the actor) is trained to succeed at the
task while acting as randomly as possible. The agent is encouraged to
take different actions that are similarly attractive with regard to
expected reward. These designs make the SAC algorithm robust and
sample-efficient. Here the policy π andQ-functions are represented by
multilayer perceptrons with parameters described in Methods. The
algorithm trains the neural networks using stochastic gradient des-
cent, in which the gradient is computed using experiences sampled
from the replay buffer and extra fictitious experiences based on
Hindsight Experience Replay (HER)44. HER further improves data effi-
ciency by allowing the agent to learn from experiences in which
the achieved goal differs from the intended goal. We also implement
the Emphasizing Recent Experience sampling technique45 to sample
recent experience more frequently without neglecting past experi-
ence, which helps the agent adapt more efficiently when the environ-
ment changes.

Agent training and performance
The agent’s performance improves along the training process as
reflected in the reward, error, success rate, and episode length, as
shown in Fig. 2a, b. The agent minimizes manipulation error and
achieves 100 % success rate over 100 episodes after ~2000 training
episodes or equivalently 6000manipulations, which is comparable to
the amount of manipulations carried out in previous large-scale atom-
assembly experiments21,25. In addition, the agent continues to learn to
manipulate the adatom efficiently with more training, as shown by the
decreasingmeanepisode length.Major tip changes (marked by arrows
in Fig. 2a, b) lead to clear yet limited deterioration in the agent’s per-
formance, which recovers within a few hundreds more training
episodes.

The training is ended when the DRL agent reaches near-optimal
performance after each of the several tip changes. In the agent’s best
performance, it achieves a 100% mean success rate and 0.089 nm

Fig. 2 | DRL training results. a, b The rolling mean (solid lines) and standard
deviation (shaded areas) of episode reward, success rate, error, and episode length
over 100 episodes showcase the training progress. The arrows indicate significant
tip changes which occurred when the tip crashed deeply into the substrate and the
tip apex needed to be reshaped to perform manipulation with the baseline para-
meters (see Methods) and the changes can be observed in the scan (see Supple-
mentary Information). cTheprobability an atom isplaced at the nearest adsorption
site to the target at a given error P(xadatom = xnearest∣ε) is calculated considering
either only fcc sites or both fcc and hcp sites (seeMethods section). With the error
distribution of the 100 consecutive successful training episodes, we estimate the

atoms are placed at the nearest site ~93% (only fcc sites) and ~61% (both fcc and hcp
sites) of the time. d, e The DRL agent, which is continually trained, and the baseline
are compared under three tip conditions that resulted from the tip changes indi-
cated in a, b. The baseline uses bias V = 10mV, conductance G = 6μA/V, and tip
movements illustrated in f. Under the three tip conditions, the baseline manip-
ulation parameters lead to varying performances. In contrast, DRL always con-
verges to near-optimal performances after sufficient continued training. f In the
baseline manipulation parameter, the tip moves from the adatom position to the
target position extended by 0.1 nm.
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mean error over 100 episodes, significantly lower than one lattice
constant (0.288 nm), and the error distribution is shown in Fig. 2c.
Even though we cannot determine if the adatoms are placed in the
nearest adsorption sites to the target without knowing the exact site
positions, we can perform probabilistic estimations based on the
geometry of the sites. For a given manipulation error ε, we can
numerically compute the probability P(xadatom = xnearest∣ε) that an
adatom is placed at the nearest site to the target for two cases:
assuming thatonly fcc sites are reachable (theblue curve inFig. 2c) and
assuming that fcc and hcp sites are equally reachable (the red curve in
Fig. 2c) (see Methods section). Then, using the obtained distribution
p(ε) of the manipulation errors (the gray histogram in Fig. 2c), we can
estimate the probability that an adatom is placed at the nearest site

pðxadatom =xnearestÞ=
Z

pðεÞPðxadatom =xnearest∣εÞdε ð2Þ

to be between 61% (if both fcc and hcp sites are reachable) and 93% (if
only fcc sites are reachable).

Baseline performance comparison
Next, we compare theperformanceof the trainedDRL algorithmwith a
set of manually tuned baseline manipulation parameters: bias
V = 10mV, conductance G = 6μA/V, and tip movements shown in
Fig. 2f under three different tip conditions (Fig. 2d, e). While the
baseline achieves optimal performance under tip condition 2 (100%
success rate over 100 episodes), the performances are significantly
lower under the other two tip conditions, which have 92% and 68%
success rates, respectively. In contrast, the DRL agent maintains rela-
tively good performances within the first 100 episodes of continued
training and eventually reaches success rates >95% after more training
under the new tip conditions. The results show that, with continued
training, the DRL algorithm is more robust and adaptable against tip
changes than fixed manipulation parameters.

Adsorption site statistics
The data collected during training also yields statistical insight into the
adatom adsorption process and lattice orientation without atomically

resolved imaging. For metal adatoms on close-packed metal (111)
surfaces, the fcc and hcp hollow sites are generally the most energe-
tically favorable adsorption sites46–48. For Ag adatoms on the Ag(111)
surface, the energy of fcc sites is found to be < 10 meV lower than hcp
sites in theory46 and STM manipulation experiments47. Here the dis-
tribution of manipulation-induced adatom movements from the
trainingdata shows thatAg adatoms canoccupyboth fcc andhcpsites,
evidenced by the six peaks ~ affiffi

3
p = 0.166 nm from the origin (Fig. 3a).

We also note that the adsorption energy landscape can be modulated
by neighboring atoms and long-range interactions49. The lattice
orientation revealed by the atom movements is in good agreement
with the atomically resolved point contact scan in Fig. 3b.

Artificial lattice construction
Finally, the trained DRL agent is used to create an artificial kagome
lattice50 with 42 adatoms shown in Fig. 3c. The Hungarian algorithm51

and the rapidly-exploring random tree (RRT) search algorithm52 break
down the construction into single-adatom manipulation tasks with
manipulation distance <2 nm, which the DRL agent is trained to han-
dle. The Hungarian algorithm assigns adatoms to their final positions
to minimize the total required movement. The RRT algorithm plans
the paths between the start and final positions of the adatom while
avoiding collisions between adatoms – note that it is possible that the
structure in Fig. 3c contains 1 or 2 dimers, but thesewere likely formed
before the manipulation started as the agent avoids atomic collisions.
Combining these path planning algorithms with the DRL agent results
in a complete software toolkit for robust, autonomous assembly of
artificial structures with atomic precision.

The success in training a DRL model to manipulate matter with
atomic precisionproves thatDRL canbeused to tackle problemsat the
atomic level, where challenges arise due to mesoscopic and quantum
effects. Our method can serve as a robust and efficient technique to
automate the creation of artificial structures as well as the assembly
and operation of atomic-scale computational devices. Furthermore,
DRLbydesign learns directly from its interactionwith the environment
without needing supervision or amodel of the environment, making it
a promising approach to discover stablemanipulation parameters that
are not straightforward to human experts in novel systems.
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Fig. 3 | Atom manipulation statistics and autonomous construction of an
artificial lattice. a Top: Adatom movement distribution following manipulations
visualized in a Gaussian kernel density estimation plot. Adatoms are shown to
reside both on fcc and hcp hollow sites. Line-cuts in two directions ~r1 and ~r2
(indicatedby the blue and red arrows) are shown in the bottom figure.bAtomically

resolved point contact scan obtained by manipulating an Ag atom. Bias voltage
2mV, current 74.5 nA. The lattice orientation is in good agreement with a.
c Together with the assignment and path-planning algorithms, the trained DRL
agent is used to construct an artificial 42-atom kagome lattice with atomic preci-
sion. Bias voltage 100mV, current setpoint 500 pA.
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In conclusion, we demonstrate that by combining several state-of-
the-art RL algorithms and thoughtfully formalizing atommanipulation
into theRL framework, theDRL algorithmcanbe trained tomanipulate
adatoms with atomic precision with excellent data efficiency. The DRL
algorithm is also shown to be more adaptive against tip changes than
fixedmanipulation parameters, thanks to its capability to continuously
learn from new experiences. We believe this study is a milestone in
adopting artificial intelligence to solve automation problems in
nanofabrication.

Methods
Experimental preparation
The Ag(111) crystal (MaTecK GmbH) is cleaned by several cycles of Ne
sputtering (voltage 1 kV, pressure 5 × 10−5 mbar) and annealing in UHV
conditions (p < 10−9 mbar). Atom manipulation is performed at ~ 5 K
temperature in a Createc LT-STM/AFM system equipped with Createc
DSP electronics and Createc STM/AFM control software (version 4.4).
Individual Ag adatoms are deposited from the tip by gently indenting
the apex to the surface53. For the baseline data and before training, we
verify adatoms can be manipulated in the up, down, left and right
directions with V = 10mV and G = 6μA/V following significant tip
changes, and reshape the tip until stable manipulation is achieved.
Gwyddion54 andWSxM55 softwarewere used to visualize the scan data.

Manipulating Co atoms on Ag(111) with deep reinforcement
learning
In addition to Ag adatoms, DRL agents are also trained to manipulate
Co adatoms on Ag(111). The Co atoms are deposited directly into the
STM at 5 K from a thoroughly degassed Co wire (purity > 99.99%)
wrapped around aW filament. Two separate DRL agents are trained to
manipulate Co adatoms precisely and efficiently in two distinct para-
meter regimes: the standard close proximity range56 with the samebias
and tunneling conductance range as Ag (bias = 5–15mV, tunneling
conductance = 3–6μA/V) shown in Suppl. Fig. 1 and a high-bias range57

(bias = 1.5–3 V, tunneling conductance = 8–24 nA/V) shown in Suppl.
Fig. 2. In the high-bias regime, a significantly lower tunneling con-
ductance is sufficient to manipulate Co atoms due to a different
manipulationmechanism. In addition, a high bias (~V) combinedwith a
higher tunneling conductance (~μA/V) might lead to tip and substrate
damage.

Atom movement classification
STM scans following the manipulations constitute the most time-
consuming part of the DRL training process. In order to reduce STM
scan frequency, we developed an algorithm to classify whether the
atom has likelymoved based on the tunneling current traces obtained
during manipulations. Tunneling current traces during manipulations
contain detailed information about the distances and directions of
atom movements with respect to the underlying lattice25 as shown in
Suppl. Fig. 3. Here we join a one-dimensional convolutional neural
network (CNN) classifier and an empirical formula to evaluate whether
atoms have likely moved during manipulations and if further STM
scans should be taken to update their new positions. Due to the
algorithm, STM scans are only taken after ~90%of themanipulations in
the training shown in Fig. 2a, b.

CNN classifier
The current traces are standardized and repeated/truncated to
match the CNN input dimension = 2048. The CNN classifier has two
convolutional layers with kernel size = 64 and stride = 2, a max pool
layer with kernel size = 4 and stride = 2 and a dropout layer with a
probability = 0.1 after each of them, followed by a fully connected
layer with a sigmoid activation function. The CNN classifier is
trained with the Adam optimizer with learning rate = 10−3 and batch
size = 64. The CNN classifier is first trained on ~10,000 current

traces from a previous experiment. It reaches ~80% accuracy, true
positive rate, and true negative rate on the test data. The CNN clas-
sifier is continuously trained with new current traces during
DRL training.

Empirical formula for atom movement prediction
We establish the empirical formula based on the observation that
current traces often exhibit spikes due to atom movements, as shown
in Suppl. Fig. 3. The empirical formula classifies atom movements as

atom movement =
True if ∂IðτÞ

∂τ ≥ c � σðIðτÞÞ
False otherwise

(
ð3Þ

where I(τ) is the current trace as function of manipulation step τ, c is a
tuning parameter set to 2–5 and σ is the standard deviation.

In the DRL training, a STM scan is performed
• when the CNN prediction is positive;
• when the empirical formula prediction is positive;
• at random with probability ~20–40%; and
• when an episode terminates.

Probability of atom occupying the nearest site as a function of ε
By analyzing the adsorption site geometry and integrating over pos-
sible target positions as shown in Suppl. Fig. 4, we compute the
probability an atom is placed at the nearest site to the target at a given
error P(xadatom= xnearest∣ε).

Whenonly fcc sites are considered,we canobserve theprobability
follows

Pfccðxadatom =xnearest∣εÞ=
1 ε≤ a

2

ð0,1Þ a
2 < ε< affiffi

3
p

0 ε≥ affiffi
3

p

8><
>: ð4Þ

Alternatively, when both fcc and hcp sites are considered, the
probability follows

Pfcc&hcpðxadatom =xnearest∣εÞ=
1 ε≤ a

2
ffiffi
3

p

ð0,1Þ a
2
ffiffi
3

p < ε < affiffi
3

p

0 ε≥ affiffi
3

p

8>><
>>: ð5Þ

Assignment and path planning method
Here we use existing python libraries for the Hungarian algorithm and
the rapidly-exploring random tree (RRT) search algorithm to plan the
manipulationpath. For theHungarian algorithmused for assigning each
adatom to a target position, we use the linear sum assignment function
in SciPy https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/
scipy.optimize.linear_sum_assignment.html. The cost matrix input for
the linear sum assignment function is the Euclidean distance between
each pair of adatom and target positions. Because the DRL agent is
trained to manipulate atoms to target positions in any direction, we
need to combine it with an any-angle path planning algorithm. We use
the rapidly-exploring randomtree (RRT) search algorithm implemented
in the PythonRobotics python library https://github.com/AtsushiSakai/
PythonRobotics/tree/master/PathPlanning. The RRT algorithm sear-
ches for paths between the adatomposition and target positionwithout
colliding with other adatoms. However, it is worth noting that the RRT
algorithm might not find optimal or near-optimal paths.

Actions of trained agent
Herewe analyze themean and stochastic actions output by the trained
DRL agent at the end of the training shown in Fig. 2a, b for 1000 states
as shown in Suppl. Fig. 5. The target positions (xtarget, ytarget) are ran-
domly sampled from the range used in the training and the adatom
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positions are set as (xadatom, yadatom) = (0, 0). Several trends can be
observed in the action variables output by the trained DRL agent. First,
the agent intuitively favors using higher bias and conductance. During
the training shown in Fig. 2, the DRL agent is observed to use
increasingly large bias and conductance as shown in Suppl. Fig. 5. Also,
analysis of the average bias and conductance over 100 episodes as
functions of the number of episodes (see Suppl. Fig. 6) shows that the
agent uses larger biases and conductance with increasing training
episodes. Second, like in baseline manipulation parameters, the agent
also moves the tip slightly further than the target position. But, dif-
ferent from the baseline tip movements (the tip moves to the target
position extendedby a constant length = 0.1 nm), theDRLagentmoves
the tip to the target position extended by a span that scales with the
distance between the origin and the target. Fitting xend (yend) as a
function of xtarget (ytarget) with a linear model yields
xend = 1.02xtarget + 0.08 and yend = 1.04ytarget + 0.03 (indicated by the
black lines in Suppl. Fig. 5b, c). Third, the agent also learns the variance
each action variable can have while maximizing the reward. Finally,
xstart, ystart, conductance, and bias show weak dependence on xtarget
and ytarget, which are however more difficult to interpret.

Tip changes
During training, significant tip changes occurred due to the tip
crashing deeply into the substrate surface and requiring tip apex
reshape to perform manipulation using baseline parameters. It led to
an abrupt decrease in the DRL agent’s performance (shown in Fig. 2a,
b) and changes in the tip height and topographic contrast in the STM
scan (shown in Suppl. Fig. 7). After continued training, the DRL agent
learns to adapt to the new tip conditions by manipulating with slightly
different parameters as shown in Suppl. Fig. 8.

Kagome lattice assembly
We built the kagome lattice in Fig. 3b by repeatedly building 8-atom
units shown in Suppl. Fig. 9. In all, 8–15manipulations were performed
to build each unit, depending on the initial positions of the adatoms,
the optimality of the path planning algorithm, and the performance of
the DRL agent. Overall, 66 manipulations were performed to build the
42-atom kagome lattice with atomic precision. One manipulation
together with the required STM scan takes roughly one minute.
Therefore, the construction of the 42-atom kagome lattice takes
around an hour, excluding the deposition of the Ag adatoms. The
building time can be reduced by selecting a more efficient path plan-
ning algorithm and reducing STM scan time.

Alternative reward design
In the training presented in the main text, we used a reward function
(Eq. (1)) that is solely dependent on the manipulation error
ε = ∥xadatom − xtarget∥. During the experiment, we considered including
a term r0 / ðxadatom,t + 1 � xadatom,tÞ � xtarget to the reward function to
encourage the DRL agent to move the adatom toward the direction of
the target. However, this term rewards the agent for moving the

adatom in the direction of the target even as it overshoots the target.
When the r0 term is included in the reward function, the DRL agent
trained for 2000 episodes shows a tendency to move the adatom
overly far in the target direction as shown in Suppl. Fig. 10.

Soft actor-critic
We implement the soft actor-critic algorithm with hyperparameters
based on the original implementation43 with small changes as shown in
Table 1.

Emphasizing recent experience replay
In the training the gradient descent update is performed in the end of
each episode. We perform K updates with K = episode length. For
update step k = 0 ... K-1, we uniformly sample from the most recent ck
data points according to the emphasizing recent experience replay
sampling technique45, where

ck = maxðN � ηk�1000K ,cminÞ ð6Þ

where N is the length of the replay buffer and η and cmin are hyper-
parameters used to tune how much we emphasize recent experiences
set to 0.994 and 500, respectively.

Hindsight experience replay
Weuse the ’future’ strategy to sample up to three goals for replay44. For
a transition (st, at, rt, st+1) sampled from the replay buffer,
maxð episode length � t,3Þ goals will be sampled depending on the
number of future steps in the episode. For each sampled goal, a new
transition ðs0t ,at ,r

0
t ,s

0
t + 1Þ is added to theminibatch and used to estimate

the gradient descent update of the critic and actor neural network in
the SAC algorithm.

Data availability
Data collected by and used for training the DRL agent, parameters of
the trained neural networks, and codes to access them are available at
https://github.com/SINGROUP/Atom_manipulation_with_RL.

Code availability
The Python code package used to control the software, train the DRL
agent and perform the automatic atomassembly is provided at https://
github.com/SINGROUP/Atom_manipulation_with_RL.
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